BAB I

PENDAHLUAN

1.1 Latar Belakang

Kesehatan merupakan keadaan fisik, mental, dan sosial yang optimal, dan bukan sekedar bebas dari penyakit. Definisi ini didukung oleh Organisasi Kesehatan Dunia *World Health Organization* (WHO) menyatakan bahwa "Kesehatan adalah keadaan sejahtera fisik, mental dan sosial yang utuh dan bukan sekadar bebas dari penyakit atau kelemahan" (Rahayu dan Anta, 2022). Dalam konteks global, menjaga kesehatan masyarakat telah menjadi prioritas utama, terutama melalui pencapaian *Sustainable Development Goals* (SDGs). Hal ini bertujuan dalam menargetkan pengurangan penyakit tidak menular seperti *stroke* sebagai salah satu tujuannya.

Penyakit *Stroke* atau dalam bahasa latin *ictus* merupakan penyakit tidak menular yang menjadi perhatian global karena dampaknya yang signifikan terhadap kesehatan masyarakat. Penyakit ini terjadi akibat gangguan aliran darah ke otak, yang menyebabkan kerusakan fungsi saraf secara tiba-tiba (Avula dkk., 2020). Risiko *stroke* dapat diminimalkan melalui pencegahan dini, seperti pemeriksaan kesehatan secara berkala untuk mendeteksi parameter risiko yang relevan. Namun, tantangan dalam penyakit ini cukup kompleks, terutama karena volume data medis yang besar dan keberadaan kelas data yang tidak seimbang, sehingga membutuhkan pendekatan analisis yang lebih canggih dan akurat.

Di era digital saat ini,teknologi informasi mengalami kemajuan yang sangat cepat, dan pengaruh teknologi pun mulai merambah ke hampir semua aspek kehidupan manusia (Handoyo, 2020). Salah satu pemanfaatan yang tepat untuk menangani sebuah kasus yaitu dengan memanfaatkan teknologi yang membawa berbagai inovasi guna memudahkan dan mempercepat berbagai tugas manusia. Jaringan Syaraf Tiruan (JST) merupakan salah satu metode *Artificial Intelligence* yang dirancang menyerupai cara kerja jaringan syaraf biologis. Dengan kemampuan mempelajari pola data yang kompleks, JST telah banyak digunakan dalam berbagai bidang, mulai dari peramalan harga produk agrikultur hingga deteksi dini penyakit. Salah satu algoritma populer dalam JST adalah *Backpropagation*, yang efektif dalam mengenali pola non-linear dan dapat

dioptimalkan untuk berbagai aplikasi prediksi dan klasifikasi (Saputra, 2019). Salah satunya adalah teknologi *Artificial intelligence*, merupakan sebuah sistem komputer yang diprogram untuk dapat melakukan tugas-tugas layaknya manusia dan membantu dalam mengambil keputusan. *Artificial intelligence* akan bekerja untuk memproses berbagai jenis data dan menggunakan kemampuannya untuk menganalisa dan mempelajari data tersebut (Singh, 2022).

Pemanfaatan teknologi informasi dan komputasi yang menerapkan metode Artificial Intelligence (AI) khususnya machine learning dan deep learning telah banyak diimplementasikan dalam berbagai bidang kehidupan, termasuk dalam bidang kesehatan dan medis. Di dunia medis, masalah yang kompleks dan terus berubah membutuhkan sistem yang dapat memberikan solusi secara cepat, tepat, dan efisien. Dalam konteks ini, teknologi deep learning muncul sebagai salah satu pendekatan yang sangat menjanjikan, karena mampu mengekstraksi pola-pola kompleks dalam data medis yang tidak dapat dikenali oleh metode konvensional (Purbolaksono, dkk., 2021). Deep learning merupakan cabang dari artificial intelligence yang menggunakan jaringan saraf tiruan berlapis (artificial neural network) untuk mempelajari pola dari data yang kompleks. Deep learning berkembang pesat karena kemampuannya meniru cara kerja otak manusia dalam mengenali, mengklasifikasikan, dan membuat keputusan berdasarkan data.

Teknologi *deep learning* tidak hanya terbatas pada sektor pendidikan, tetapi juga telah diimplementasikan secara luas di bidang kesehatan. Teknologi ini mampu menganalisis data medis yang kompleks, seperti data rekam medis, citra medis, serta data faktor risiko penyakit, untuk menghasilkan diagnosis yang lebih cepat dan akurat. Teknologi yang berkembang pesat dan dapat dimanfaatkan dalam bidang kesehatan adalah *Artificial Intelligence* (AI), khususnya dengan pendekatan *Machine Learning*. Dengan teknik ini, sistem dapat dilatih menggunakan data riwayat medis pasien untuk melakukan prediksi *stroke* berdasarkan sejumlah parameter seperti usia, hipertensi, kadar glukosa, status merokok, dan lain-lain (Aulia dkk, 2023).

Penggunaan teknologi *deep learning* yang cocok dalam sistem klasifikasi salah satunya dengan menggunakan *Multilayer Perceptron* (MLP) yang memiliki keunggulan dalam studi yang memanfaatkan algoritma ini untuk memprediksi

sessions pada website jurnal elektronik. Penelitian tersebut menyoroti keunggulan *Multilayer Perceptron* (MLP) dalam penentuan bobot yang optimal, kemampuannya untuk diimplementasikan dengan mudah tanpa pengetahuan awal yang mendalam, serta fleksibilitasnya dalam menyelesaikan masalah prediksi berbasis data. Karakteristik ini semakin memperkuat alasan pemilihan *Multilayer Perceptron* (MLP) sebagai algoritma utama dalam penelitian klasifikasi penyakit *stroke* (Wibawa dkk, 2020). Jaringan saraf tiruan juga terbukti mampu menghasilkan prediksi yang baik meskipun menggunakan jumlah data pelatihan yang terbatas, selama arsitektur dan parameter model disesuaikan secara optimal (Panca Saputra dan Panca, 2020). Hal ini sangat relevan dengan permasalahan di dunia medis, khususnya dalam klasifikasi penyakit *stroke*, yang seringkali terkendala oleh jumlah data yang terbatas namun membutuhkan sistem deteksi dini yang akurat dan efisien.

Berdasarkan permasalahan tersebut, maka tercetuslan penelitian yang dituangkan dalam skripsi penulis yang berjudul "Klasifikasi Penyakit Stroke berbasis Deep Learning menggunakan Multilayer Perceptron (MLP)". Penelitian ini tidak hanya berkontribusi dalam aspek akademik dan teknis, tetapi dalam proses pengembangan ini diharapkan memiliki dampak sosial yang nyata, Dengan demikian, diharapkan sistem ini dapat menjadi alat bantu preventif yang mendorong masyarakat untuk lebih peduli terhadap kondisi kesehatannya.

1.2. Rumusan Masalah

Masalah yang dirumuskan berdasarkan latar belakang tersebut adalah:

- 1. Bagaimana merancang sistem berbasis *deep learning* menggunakan?
- 2. Bagaimana menerapkan deep learning?
- 3. Berapa tingkat akurasi dari pemanfaatan deep learning klasifikasi penyakit *stroke* menggunakan metode *multilayer perceptron*?

1.3. Batasan Masalah

Dalam penelitian ini, agar tidak menyimpang dari tujuan yang ingin dicapai maka pembahasan akan dibatasi sebagai berikut:

- 1. Sistem ini diimplementasikan pada deteksi stroke.
- 2. Data yang digunakan merupakan dataset dari kaggle.com.

3. Sistem ini difokuskan untuk klasifikasi penyakit *stroke* atau tidak.

1.4. Tujuan Penelitian

Berdasarkan rumusan masalah tersebut ditetapkan tujuan penelitian sebagai berikut:

- 1. Mengetahui bagaimana merancang sistem klasifikasi deteksi penyakit *stroke* berbasis *deep learning* menggunakan metode *multilayer perceptrom*.
- 2. Mengetahui bagaimana memanfaatkan *deep learning* dalam klasifikasi penyakit *stroke* menggunakan *multilayer perceptron*.
- 3. Mengetahui performa klasifikasi penyakit *stroke* berbasis *deep learning* menggunakan *multilayer perceptron*.

1.5. Manfaat Penelitian

Adapun manfaat dari sistem yang akan dibangun ini adalah:

- 1. Diharapkan dapat membantu dalam klasifikasi penyakit stroke atau tidak.
- 2. Sistem ini dapat menyajikan data yang terstruktur dan objektif.
- 3. Dapat meningkatkan literasi teknologi di bidang kesehatan.